An Introduction to Modbus® Communications
Webinar Organizers

Joe Ryan
Product Manager
Precision Digital Corporation

Ryan Shea
Applications Specialist
Precision Digital Corporation

Bruce McDuffee
Webinar Moderator
Precision Digital Corporation
Agenda

1. What is Modbus?
2. Protocols, networks and terms
3. How does Modbus work?
4. When should I use Modbus?
5. Pros and Cons of Modbus
6. Practical cases
Takeaways

Understand the fundamentals of the terms and difference between a network and communication protocol

Learn how Modbus works and how it’s different from analog signals

Know the pros and cons of Modbus as a communication choice

Put it all together with a couple of real case scenarios
Getting to know you

• Where are you located?
• What is your industry?
• What is your experience with Modbus?
What is Modbus?

- Digital communication for 2 or more devices
- An application-layer protocol
- Open source code
- Published by Schneider Electric
Analog Signals

- Analog signals have an infinite number of possible values over time.
- Example:
 - 12.9 mA
 - 4.563 mA

Digital Signals

- Discrete number of values from 2 to billions determined by number of bits
- Vary with sample times
Digital Communication via Packets

- Digital signal communicated 1 and 0 values
- This code is read and interpreted by the Protocol
Protocols, networks, and terms

• RS232, RS485, USB, Ethernet are types of networks and used with Modbus.
 • Different transmission mediums to send the Modbus Protocol
 • Modbus is the language being spoken
 • RS232, RS485, Ethernet, etc. are the medium, such as phone, VOIP, fax, letter, etc.
 • Different methods of communicating the same core language between two devices.
Types of Networks

- **RS-485**
 - Full (5-wire) or half-duplex (3-wire)
 - Multi-drop
 - Up to 4,000 ft (1219 m).
 - Very common on industrial devices
 - Not common on computers
- **RS-232**
 - Usually 9-pin serial port
 - Usually only two devices
 - Up to 1,000 ft (305 m) are required.
 - Common on older desktop computers
Types of Networks (cont.)

• USB (Universal Serial Bus)
 • Various standard cables and connectors
 • Type A, Type B, mini, and micro
 • Less than 16 feet 5 inches (5 meters) without additional devices
 • Very common on computers

• Ethernet
 • Devices accessed anywhere on the network
 • Often everywhere in a facility
 • Web servers, virtual coms, etc. for global reach
 • Complicated to setup
 • Power over Ethernet options available
Questions?

- Please enter your questions in the ‘Questions’ window
Common specifications and settings

- Device address / Slave ID
- Baud rate
- Data format
- Parity
- Other
Device Address / Slave ID

- Programmable for 1 – 247 devices
- Each device on the Modbus network must have a unique identifier.
Baud rate

- Speed of communication in bits/second
- 300 – 19,200 bps
- Must be identical for all devices on the network
Data format

- Configures the Modbus data packet
- Start bits & Stop bits
- Must match on all devices on the network
Parity

- Even, odd or none
- Defines the data packet
- Should match on all devices
Other specifications

- Byte-to-byte timeout
- Transmit delays
- Other
Registers & tables

<table>
<thead>
<tr>
<th>Register</th>
<th>Name</th>
<th>Access</th>
<th>Limits or Range</th>
<th>Units</th>
<th>Data Type</th>
<th>Function Code(s)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>40001 – 40002</td>
<td>PV1 Display value</td>
<td>Read Only</td>
<td>-99999 to 999999</td>
<td>User defined</td>
<td>Floating point</td>
<td>03, 04</td>
<td>Represents the PV1 display value including the decimal point. Under Range = -99999, Over Range = 999999, and Open = -99999</td>
</tr>
<tr>
<td>40003</td>
<td>Alarm and Relay status</td>
<td>Read Only</td>
<td>1 = In Alarm, 1 = relay energized</td>
<td>None</td>
<td>Word; Bits</td>
<td>03, 04</td>
<td>Read alarm status and energized/non-energized status of relays. Alm = Alarm, Rly = Relay.</td>
</tr>
<tr>
<td>40004</td>
<td>Digital Inputs and Outputs status</td>
<td>Read Only</td>
<td>1 = Input selected, 1 = Output active</td>
<td>None</td>
<td>Word; Bits</td>
<td>03, 04</td>
<td>Read the state of the digital inputs and outputs.</td>
</tr>
<tr>
<td>40005 – 40006</td>
<td>Maximum Display value</td>
<td>Read Only</td>
<td>-99999 to 999999</td>
<td>User defined</td>
<td>Floating point</td>
<td>03, 04</td>
<td>Represents the Maximum display value, including the decimal point, since last power up or Max Value reset.</td>
</tr>
</tbody>
</table>

- Tables are a tool for programming the master device.
- Each register will have type and number.
- Tables are charts used to define the registers.
How does Modbus work?

• Master and Slave devices
 • Master polls multiple slave devices to gather information
 • Slave devices cannot transmit information without a request
 • The master keeps communication organized

• Data is sent in a series of 1s and 0s called bits in packets
 • Data content is identified in tables and registers

• Modbus Map
 • Defines the data
 • Tells the Master where the data is stored
 • Tells the Master how the data is stored
When should I use Modbus?

- When more than one piece of data is required from multiple field devices
- When a single field device gathers multiple useful PVs
- When adequate power is available
Pros and Cons of Modbus

Pros
- Ability to use multivariate transmitters
- Better accuracy from digital signals
- Easy to add devices
- High noise immunity
- Centralized SCADA
- Open source
- Network versatility

Cons
- More expensive than analog
- Complex to setup
- No way for slaves to report exceptions
- Limited to 247 devices
- No security of signal
Practical Case 1: Level Monitoring of Oil & Water in Storage Tanks

Problem: Operator monitoring of top levels, oil/water interface levels, and temperature in storage tanks.

- PD6830-AX0-I-2 Modbus scanner as the Modbus master
- (4) MTS M-Series multivariable tank level gauges as slaves
- 3-wire half-duplex RS-485 used for the connections
 - Easy to wire
 - Long distances OK
 - Multidrop (5 devices on the network)

This solution displays product level, interface level, and temperature for each tank.

<table>
<thead>
<tr>
<th>Fixed Serial Data Parameters</th>
<th>MTS M-Series Transmitter Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level Register</td>
<td>30001, 30002</td>
</tr>
<tr>
<td>Interface Register</td>
<td>30003, 30004</td>
</tr>
<tr>
<td>Ave Temp Register</td>
<td>30017, 30018</td>
</tr>
<tr>
<td>Data Type</td>
<td>Long Integer (2 registers), Binary, Signed</td>
</tr>
<tr>
<td>Byte Order</td>
<td>1234 (most significant digit register first)</td>
</tr>
</tbody>
</table>

The above parameters are taken from the MTS M-Series Modbus tables and used for programming the Scanner.

<table>
<thead>
<tr>
<th>Serial Comm Parameters</th>
<th>Scanner</th>
<th>Tank 1 Transmitter</th>
<th>Tank 2 Transmitter</th>
<th>Tank 3 Transmitter</th>
<th>Tank 4 Transmitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address (Slave ID)</td>
<td>100</td>
<td>001</td>
<td>002</td>
<td>003</td>
<td>004</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>4800 bps</td>
<td>4800 bps</td>
<td>4800 bps</td>
<td>4800 bps</td>
<td>4800 bps</td>
</tr>
<tr>
<td>Transmit Delay</td>
<td>50 ms</td>
<td>50 ms</td>
<td>50 ms</td>
<td>50 ms</td>
<td>50 ms</td>
</tr>
<tr>
<td>Parity/Stop Bits</td>
<td>None / 1</td>
</tr>
</tbody>
</table>
Practical Case 2: Using Modbus to Poll Data From the Field

Problem: How to get exact, accurate data from two flow meters mounted far from the control room.

- Modbus on PLC allows for error-free rate and total information from the flowmeters
- Ethernet used as a communication method
 - Remote location OK
 - Already present in control room
- Easy to add devices later

<table>
<thead>
<tr>
<th>Serial Comm Parameters</th>
<th>Flow Transmitter 1</th>
<th>Flow Transmitter 2</th>
<th>Control Room PLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address (Slave ID)</td>
<td>100</td>
<td>200</td>
<td>001</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>9600 bps</td>
<td>9600 bps</td>
<td>9600 bps</td>
</tr>
<tr>
<td>Transmit Delay</td>
<td>50 ms</td>
<td>50 ms</td>
<td>50 ms</td>
</tr>
<tr>
<td>Parity</td>
<td>Even, 1 Stop Bit</td>
<td>Even, 1 Stop Bit</td>
<td>Even, 1 Stop Bit</td>
</tr>
</tbody>
</table>

The above parameters are taken from the flowmeter Modbus tables and used for programming the PLC.
Summary

1. What is Modbus?
2. Protocols, networks and terms
3. How does Modbus work?
4. When should I use Modbus?
5. Pros and Cons of Modbus
6. Practical cases
• Please enter your questions in the ‘Questions’ window
• Apologies if we do not get to your question today. We’ll contact you offline with a response as soon as possible.
The Fundamentals of 4-20 mA Current Loops

• This webinar is designed as an introductory class for those who have to deal with 4-20 mA process signals but are not electrical engineers. This webinar will answer questions including:
 • What is a 4-20 mA current loop?
 • Why is this signal so popular?
 • How do I wire a 4-20 mA loop?
• Back by popular demand!

Next Webinar – May 26th
Helping you become more proficient with process signals connections and communications.

Your source for:
- Digital Panel Meters
- Explosion-Proof Instruments
- Loop-Powered Meters
- Large Display Meters
- Pulse Input Meters and Controllers
- And more
thank you

For more information

1-800-343-1001
sales@predig.com
www.predig.com

Webinar info
www.predig.com/webinars